DESIGN OF HEAT STORAGE SYSTEM FOR PARABOLIC DISH TYPE SOLAR COOKER

¹Harshal Patil, ²Dr. Nishikant Kale

Phd Scholar, Mechanical Engineering, Prof. Ram Meghe Institute of Technology and Reseach, Badnera¹, Professor, Mechanical Engineering, Prof. Ram Meghe Institute of Technology and Reseach, Badnera² hdpatil1986@gmail.com¹, nwkale@gmail.com²

ABSTRACT

Solar energy is available freely and does not create any pollution to the environment. Hence, researchers from all around the world are always working on solar energy applications with enhancement technologies. The solar cooker is one of the largest solar energy application, which is used to cook the food. However, because the solar energy is available only during the daytime, solar cookers are not getting popularity as the main device for cooking. To store the heat during the day, energy storage system is required. Hence, this study presents the design of heat storage system for parabolic dish type solar cooker. Heat storage unit is used to store heat during daytime and use for other than daytime hours. Also, the two types of heat storing materials were considered for analysis and compared. Hence, with proposed heat storage unit the cooking is possible even in the evening with a solar cooker. So that, solar cooker with storage unit is very beneficial for the humans and as well as for the energy conservation

INTRODUCTION

Solar cookers are the means to cook food with the help of solar energy. For this purpose, the solar energy can be collected using solar collector and transferred to the cooking vessel. The solar cooking is in practice since seventeenth century with continuous research efforts to improve the performance of cooker. The solar cooking was started with the solar cooker box and has been developed into various

forms in due course of time. But, in the present condition the solar cookers are rarely used. Its main reason limits the usefulness of solar cookers in sunshine time only. The cooking at night or in cloudy days is not possible. This has created a necessity for development of solar cookers which can work at night as well as in cloudy days.

As the energy demand is increasing day by day with increasing population and pollution, the need of renewable energy is becoming the very essential in every field. There are various sources for renewal energy which are being widely used now days. Solar energy is the one of a very popular and easily available source of renewable energy. Still its use is only about 4% of total renewable energy used [1]. This solar energy can be used by means of photovoltaic (PV) cell or solar collectors. It has several uses

like drying, space heating, cooking, electricity generations etc. [2–5]. And one of the well-known uses of solar energy is to cook the food [6]. It requires proper mechanism to use this solar energy for solar cooking. And it is done with the help of solar cookers. Till now, lot of solar cookers have been designed and used. It is being developed since seventeenth century [7–9]. Still it needs lot of research before selecting any one type for its use at specific region. It depends on geographical area, type of collector & its area, heat requirement, type of food to be cooked; at what time it is to be cooked etc. [10]. Among all those different designs, a simple solar box type cooker is used commonly due to its simplicity. The use of a solar box cooker is limited because cooking of food is difficult due to frequent clouds in the day or unavailability of solar energy in the evening. So cooking at night by this solar box cannot be done. Some have used hybrid energy also to improve the efficiency of cooker [11]. If storage for solar energy can be provided in a box cooker, then there is a possibility of cooking food in the evening and this will increase the effectiveness and reliability of these solar cookers [12–14]. This leads to need

of indoor cooking system [15, 16]. For a solar cooking system to be accepted and adopted in most of the households, the following characteristics have to be satisfied [17–20]:

- 1. Possibility of cooking at any time of day
- 2. Cooking time must be comparable with conventional cooking
- 3. Economical aspect To overcome above cited limitations and gain the desirable characteristics, researchers reported their findings [15, 21].

There are different heat storage systems (Heat Exchangers) available in the market. So, exact selection of most suitable becomes very difficult. Most of the time it become necessary to design and develop customized system which can meet the purpose. The solar collectors are classified as follows [22, 23]:

According to Soteris A. Kalogirou [23], the temperature up to 400° can be obtained by using parabolic trough collector and even more than that is also possible by using parabolic dish reflector. So, taking this as a reference one can select the suitable solar collector. Hence, in such types of systems, energy storage and transportation is the key work. Solar energy has to be transported to the kitchen by

means of a circulating fluid. Therefore, the critical study of heat storage and transfer systems along with their parameters attracts the attention of researchers.

HEAT STORAGE SYSTEMS

Heat collected from the sun is used for the solar cooking but if it is directly supplied to cooking then it will be useful in day time/sunshine hours only. To carry the cooking at any time, one needs to store this heat so that it can be retrieved as and when required [24]. To store this heat the storage system is required which will be able to store the heat with minimum losses, so as to store the heat at least in the range of 200–300 °C [25]. Therefore, for the efficient heat storage systems following parameters must be considered:

- i. Type of solar cooking system (heat exchanger)
- ii. Heat storage capacity
- iii. Size and volume of the storage system
- iv. Heat losses and insulation
- v. Heat storing Media
- vi. Temperature range
- vii. Application (direct use or use for steaming) [26, 27]

MATERIAL SELECTIONS

Material selection is also one of the main aspect in the development of Solar cooking system. Material selection should be done for the following component of the system:

E-ISSN NO:2349-0721

- i. Material for shell & Tubes (Heat Exchangers)
- ii. Heat transfer fluid (HTF)
- iii. Material for Storage (PCM)
- iv. Material for Insulation.

Table 1 Material with thermal conductivity at different temperature.

Maradal	Thermal conductivity W/mK			
Material	At 20 °C	100 °C	200 °C	300°C
	At 20 °C	100 °C	200 °C	300°C

Aluminium	204	206	215	228
Brass	111	128	144	147
Copper	386	379	374	369
Cast iron	52			
Carbon steel	54	52	48	45
Silver	419	415	412	

MATERIAL FOR STORAGE (PCM)

For latent heat storage system, selection of phase change material is very crucial. Phase change material can be classified as below:-

- i. Organic- Paraffin & Non Paraffin (fatty acids)
- ii. Non organic- Salt hydrates and metallic
- iii. Eutectics—it's a mixture of two or more component [28]

There are lots of PCM available now days but its selection is very crucial thing [29]. It depends on the availability and applicability of the PCM of the selected purpose. Some of the promising PCM are mentioned in the below Table 2. The paraffins are safe, reliable, predictable, less expensive and non-corrosive. They are chemically inert and stable below 500 °C, show little volume changes on melting and have low vapor pressure in the melt form. Salt hydrates are the most important group of PCMs, which have been extensively studied for their use in latent heat thermal energy storage systems. The most attractive properties of salt hydrates are:

- (i) high latent heat of fusion per unit volume,
- (ii) relatively high thermal conductivity and
- (iii) small volume changes on melting.

They are not very corrosive, compatible with plastics. This makes NaOHH2O

and NaNO3 promising PCM for the required range of melting temperature. Sugar alcohols (D- Manitol, Myoinositol, Dulcitol, Erythritol and Sorbitol) are suitable PCM for medium temperature applications. The bases of the selection criterion are mainly on two points:

- (1) high phase change enthalpy and
- (2) melting temperatures between 150 and 250 °C.

Also, HDPE is non-hazardous and economical, hence it can be used as a PCM.

Table 2 List of various PCM considered by researchers [35][36][37][38][39][40]

Material	Melting temp °C	Enthalpy (latent heat) of	
		fusion kJ/kg	

D-mannitol	138.25	152.6
Myo-inositol	220.34	211.1
Dulcitol	180.07	257.15
Paraffin wax 6106	42-45	189
High density polyethylene (HDPE)	130	211-233
NaNO ₃	307	172
NAOH-H ₂ O	64.3	273
KNO ₃ -NaNO ₂ -NaNO ₃	141	275

DESIGN OF STORAGE SYSTEM [34]

The Design of the system is specially for existing parabolic dish type solar cooker. In this solar cooker, surface focused is found and the available space for pot holder is about 250 mm diameter as shown in fig. 1. Hence it is preferred to design it volume wise. Depending on above data and based on the application, **coiled type heat exchanger** is selected for the Energy Storage System. [30][31]

Fig. 1 Parabolic dish type solar cooker

Therefore, assume two parameters as below,

Diameter of Shell (D) = 25 cm = 250 mm

Height of Shell (H) = 30 cm = 300 mm

Coil Height:

Minimize the distance 4 cm from the bottom due to supporting clamp & also maintain the clearance distance of 2 cm from top as well as bottom inside the shell.

Height of the coil = 22 cm = 220 mm.

Number of turns in a coil (n) =
$$\frac{\textit{Heig} \, \exists \, \textit{t of coil}}{\textit{Distance covered by 1 turn}}$$
$$= 8 \, \textit{turns}$$

Length of first coil, $L = 2\pi R_1$ n (where, n is total no. of turns)

$$= 5.27 \text{ m}$$

Volume of shell, $V_1 = \pi R^2 H$

Volume of Tubes inside the shell, $V_2 = \pi (r_1)^2 L$

$$= 0.258 \text{ ltr}$$

Therefore,

Volume of Shell with Tubes,

$$V_o = V_1 - V_2$$

$$= 14.46$$
 litre

In the present research work, working fluid inside the shell is Hytherm 600, this oil is stored in shell at 200°C.

Therefore, for the Hytherm 600 oil, following are the properties, [32]

At 200° C, Density
$$\rho = 885 \text{ kg/m}^3$$

Sp. Heat
$$C_p = 2.19 \text{ kJ/kg K}$$

Viscosity =
$$0.972 \text{ mm}^2/\text{s}$$

Initial temperature of HTF $T_f = 200^{\circ}C$

Initial Temperature of water $T_w = 30$ °C

As, the working fluid inside the shell is steady, therefore, Natural Convection occurs.

Mean film temp.
$$T_m = (200+30)/2 = 115$$
 °C

Therefore, for the Hytherm 600 oil, following are the properties,

At 115°C, Density
$$\rho = 9944.5 \text{ kg/m}^3$$

Sp. Heat
$$C_p = 1.89 \text{ kJ//kg K}$$

Kinematic Viscosity
$$\Upsilon = 2.825 \text{ mm}^2/\text{s} = 2.825 \text{ X } 10^{-6} \text{ m2/s}$$

Dynamic viscosity
$$\mu = 2.67 \text{ mPa} = 0.00267 \text{ Ns/m}^2$$

Thermal conductivity k=0.11245 W/mK

Coefficient of volume expansion, $\beta = 1/(115=273) = 2.57 \text{ X } 10^{-3} \text{ k}^{-1}$

Prandtl Number, $Pr = \mu C_p / k = 44.87$

Grashoffs Number
$$Gr = \beta g \Delta T L_c^3 / \Upsilon^2$$

For horizontal tube, Characteristic length L_c = diameter of tube= 12.5 X 10^{-3}

$$G_r = 0.928 \times 10^6$$

Therefore, $G_r.P_r = 41.64 \times 10^6$

Since, $10^4 < G_r.P_r < 10^9$

Therefore, Flow is Laminar

Nusselt number Co-relation is given by,

$$Nu = C (G_r P_r)^n C_1$$

For Laminar Flow, and through the horizontal tube, following are constants value,

$$C = 0.47$$
, $n = \frac{1}{4}$, $C_1 = .01$

Therefore, Nu = 0.119

But $Nu = h L_c/k$

Therefore, Coefficient of heat transfer $h = 1.11 \text{ W/m}^2 \text{ }^{\circ}\text{C}$

Heat Transfer rate through shell to water Q,

 $Q = h A \Delta T$

= 33.93 W or J/s

Maximum heat contained in shell fluid,

For the Hytherm 600 oil

Mass of fluid m_f = Density × Maximum volume of shell fluid

$$m_f\!=\!-8.85\;kg$$

Heat contained in shell fluid $Q_s = m_f \times C_p \times \Delta T$

$$Q_s = 4612.79 \text{ kJ}$$

In present work, water is the working fluid inside the coil. Water is circulated inside the tube coil to produce the steam.

Assume the required steam temperature is 110 °C.

Therefore, for water following are the properties,

At 30° C, Density
$$\rho = 995.70 \text{ kg/m}^3$$

Sp. Heat
$$C_p = 4.177 \text{ kJ/kg} ^{\circ}\text{C}$$

At 110° C, Density
$$\rho = 965.30 \text{ kg/m}^3$$

C_p for superheated steam which varies from 2 to 2.3 KJ/kg.K

Consider Sp. Heat
$$C_p = 2.15 \text{ KJ/kg.K}$$

Assume, Atmospheric condition for the calculation.

Water inlet temperature $T_w = 30^{\circ}C$

Saturation temperature of water T_{sat}=100°C

Required Steam Temperature T_{sup}=110°C

Mass of water $m_w = 1 \text{ kg}$

Latent heat of variation $(hf_g) = 2257 \text{ kJ/kg}$

Total Heat required for superheated steam = Heat req to heat water from 30° C to 100° C (Q₁)

- + Heat req. to convert water to steam (Q_2)
- + Heat req. for superheat the steam upto 110°C (Q₃)

Therefore,

$$Q_1 = m C_p \Delta T$$

$$Q_1 = 291.9 \text{ kJ}$$

 Q_2 = Latent heat of variation (hf_g) X mass

$$Q_2 = 2257 \text{ kJ}$$

$$Q_3 = m \times C_p \times (T_{sup} - T_{sat})$$

$$Q_3 = 21.5kJ$$

$$Q = Q_1 + Q_2 + Q_3$$

$$Q = 2570.4 \text{ kJ}$$

Hence heat required to produce one kg of steam is 2570.4 KJ.

Total capacity of steam generation in heat storage unit (Hytherm 600),

$$= 1.79 \text{ kg}$$

Similarly, Total capacity of steam generation in heat storage unit (HDPE) = 2.06 kg

HEAT LOSS THROUGH SYSTEM (HEAT LOSS RATE)

Radial heat loss is given in eq. including convective as well as conductive loss, [33]

Consider mineral wool insulation of 7 cm thickness.

$$Q_{radial} = (T_{pcm} - T_a / R_{resist})$$

Resistance =
$$R_{\text{resist}} = \frac{1}{2\pi h} \left[\frac{\ln \left(\frac{R^2}{R_1} \right)}{k_1} + \frac{\ln \left(\frac{R^3}{R_2} \right)}{k_i} + \frac{1}{hoR^3} \right]$$

$$Q_{radial} = (200-30)/6.19$$

$$= 27.46$$
 J/s or w

$$= 98.86 \text{ kJ/hr}$$

And when heatlon foam insulating sheet of 1 cm is wrapped on mineral wool,

$$Q_{radial} = = 23.64 \text{ J/s}$$

$$= 85.11 \text{ kJ/hr}$$

Heat loss through storage tank (shell) in axial direction is given by

$$Q_{\text{axial}} = \frac{(Ts - Ta)}{1/\pi \left[\frac{tc}{R2k1} + \frac{tcyln}{R3ki} + \frac{1}{hoR3}\right]}$$
$$= 12.42 \text{ J/s}$$

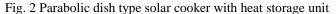
Therefore,

Total heat loss
$$Q = Q_{radial} + Q_{axial}$$

$$= 129.09 \text{ kJ/hr}.$$

For Hytherm 600 oil,

Time to Loss this heat upto 30 $^{\circ}$ C = Heat Stored in storage system / Heat loss rate = 4612.79/129.09 = 35.73 hrs


For HDPE,

Time to Loss this heat upto 30 °C = Heat Stored in storage system / Heat loss rate

= 5305.9/129.09

= 41.1 hrs

The main advantages of presented storage system directly mount on solar cooker, so there is no need of separate heat transfer system required from collector to storage system. The complete set up is shown in fig. 2.

CONCLUSION

In this research work, heat storage system has been designed and fabricated for specific parabolic dish type solar cooker. The theoretical results the feasibility of using a phase change material as the storage medium in solar cookers, i.e. it is possible to cook the food even in the evening with a solar cooker having latent heat storage. The given result is also compared with heat transfer fluid Hytherm 600 oil, it also stored the heat up to 30 °C for 35.73 hrs. and HDPE material is stored the heat upto 30 °C for 41.1 hrs. It also provides a nearly constant heat loss through shell at the rate of 129.09 kJ/hr. Also Steam generation calculation is performed, More amount of steam is generated in case of HDPE as compared to Hytherm 600 oil. It is easy to mount on dish directly. There is no need of separate transfer system which transport heat from collector to storage system.

REFERENCES

- 1. Kale DM (2012) Non-conventional energy sources: current scenario and future trends, a key-note address. In: 9th Biennial international conference and exposition on petroleum geophysics, Hyderabad
- 2. Nandwani SS (2007) Design, construction and study of a hybrid solar food processor in the climate of Costa Rica. Renew Energy 32:427–441
- 3. Hajian M (2013) Various aspects of solar energy utilization: review. Int J Adv Sci Technol 58:41–50
- 4. Singh M, Sethi VP (2018) On the design, modelling and analysis of multi-shelf inclined solar cooker-cum-dryer. Sol Energy 162:620–636
- 5. Jaluria Y (1989) Design, optimization and control of a thermal energy storage system. Energy storage systems. Kluwer Academic Publishers, pp 89–116
- 6. Yettou F, Azoui B, Malek A, Gama A, Panwar NL (2014) Solar cooker realizations in actual use: an overview. Renew Sustain Energy Rev 37:288–306
- 7. Mahavar S, Sengar N, Rajawat P, Verma M, Dashora P (2012) Design development and performance studies of a novel Single Family Solar. Renew Energy 47:67–76
- 8. .uce E, Cuce PM (2013) A comprehensive review on solar cookers. Appl Energy 102:1399–1421
- 9. Saxena A, Pandey SP, Srivastav G (2011) A thermodynamic review on solar box type cookers. Renew Sustain Energy Rev 15:3301–3318
- 10. Avilés G, Juan J (2014) Thermal model of a solar cooker jorhejpataranskua. Energy Procedia 57:1623–1631
- 11. Azam M, Jamil Y, Musadiq M, Zhaira R, Yasir Javed M (2009) Fabrication and performance study of slope type electric cum solar oven. Pak J Agric Sci 46(3):228–231
- 12. Otte PP (2014) Solar cooking in Mozambique—an investigation of end- user's needs for the design of solar cookers. Energy Policy 74:366–375
- 13. Dheep GR (2014) Latent heat storage system for solar thermal energy applications. Voice of Research 2(4):80–86
- 14. Muthusivagami RM, Velraj R, Sethumadhavan R (2010) Solar cookers with and without thermal storage—a review. Renew Sustain Energy Rev 14:691–701
- 15. Prasanna LUUR (2011) Modeling and design of a solar thermal system for hybrid cooking application. Appl Energy 88:1740–1755
- 16. Abdulateef AM, Abdulateef J, Mat S, Sopian K, Elhub B, Mussa MA (2018) Experimental and numerical study of solidifying phase-change Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins. Int Commun Heat Mass Transfer 90:73–84
- 17. Sosa LBL, Avilés MG, Pérez DG, Gutiérrez YS (2014) Rural Solar Cookers, an alternative to reduce the timber resource extraction through the use of renewable energy sources: technology transfer and monitoring project. Energy Procedia 57:1593–1602
- 18. Prasanna LUUR (2011) Optimization and design of energy transport system for solar cooking application. Appl Energy88:242–251
- 19. Bansal M, Saini RP, Khatod DK (2013) Development of cooking sector in rural areas in India—a review. Renew Sustain Energy Rev 17:44–53
- 20. Zhao J, Ji Y, Yuan Y, Zhang Z, Lu J (2018) Energy-saving analysis of solar heating system with PCM storage tank. Energies 11:1–19

- 21. Hussein HE-GSNHMS (2008) Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit. Energy Convers Manag 49:2237–2246
- 22. Hossain RSHFNRMIJAMRMS (2011) Review on solar water heater collector and thermal energy performance of circulating pipe. Renew Sustain Energy Rev 15:3801–3912
- 23. Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295
- 24. Kumar N, Budhiraja A, Rohilla S (2016) Feasibility of a solar cooker in off sunshine hours using pcm as the source of heat. Adv Eng Int J 1(1):33–39
- 25. Sulaiman FSA (2011) Development of a thermal energy storage for the integrated solar energy project. R&D J South Afric Inst Mech Eng, pp 6–11
- 26. Indora S, Kandpal TC (2018) Financial appraisal of using Scheffler dish for steam based institutional. Renew Energy 30:1–12
- 27. Flueckiger SM, Yang Z, SV Garimella (2013) Design of moltensalt thermocline tanks for solar thermal energy storage. CTRC Research Publications, pp 1–50
- 28. Qiu S, White M (2013) Phase change material thermal energy storage system design and optimization. In: Proceeding of ASME 2013, 7th international conference on energy sustainability and 11th fuel cell science, engg & tech conference, ESfuel cell 2013, Minneapolis, MN, USA
- 29. Magin BWMJASDDTRL (1961) Transition temperatures of the hydrates of Na2S04, Na2HP04 and KF as fixed points in biomedical thermometry. J Res Natl Bureau Stand 86(2):181–192
- 30. Thulukkanam, K., 2013. Classification of Heat Exchanger. Heat Exchanger Design Handbook, 2nd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, pp.1-27.
- 31. Thermopedia B. R.J., Standards of the Tubular Exchanger Manufacturers Association, (TEMA [Online]. Available: http://dx.doi.org/10.1615/AtoZ.s.shell_and_tube_heat exchangers.,
- 32. HPLubricants," Hindustan Petrolium, 2019. [Online]. Available: at https://www.hplubricants.in/products/specialties/thermic-fluids/hytherm-500-and-600-thermic-fluid-oil.
- 33. "Heat Transfer Fluid by SOLUTIA," Sollutia, [Online]. Available: http://twt.mpei.ac.ru/TTHB/HEDH/HTF-66.PDF.
- 34. J. P. Holman, 2010. Heat Transfer, Ney York: McGraw Hill Companies, Inc.
- 35. A. Solé, X. Fontanet, C. Barreneche, I. Martorell, A. I. Fernández and L. F. Cabeza, "Parameters to take into account when developing a new thermochemical energy storage system, Energy Procedia, no. 30, pp. 380-387, 2012.
- 36. Solé, A., Neumann, H., Niedermaier, S., Cabeza, L.F. and Palomo, E., 2014. Thermal stability test of sugar alcohols as phase change materials for medium temperature energy storage application. Energy Procedia, 48, pp.436-439.
- 37. Tian, Y. and Zhao, C.Y., 2013. A review of solar collectors and thermal energy storage in solar thermal applications. Applied energy, 104, pp.538-553.
- 38. Solé, A., Fontanet, X., Barreneche, C., Martorell, I., Fernández, A.I. and Cabeza, L.F., 2012. Parameters to take into account when developing a new thermochemical energy storage system. Energy Procedia, 30, pp.380-387.

- 39. Qiu, S., Galbraith, R. and White, M., 2013, July. Phase change material thermal energy storage system design and optimization. In Energy Sustainability (Vol. 55515, p. V001T11A011). American Society of Mechanical Engineers
- 40. Gasia, J., Martin, M., Solé, A., Barreneche, C. and Cabeza, L.F., 2017. Phase change material selection for thermal processes working under partial load operating conditions in the temperature range between 120 and 200° C. Applied Sciences, 7(7), p.722.

